
LecTrack: Incremental Dialog State Tracking with Long
Short-Term Memory Networks

Lukáš Žilka and Filip Jurčı́ček?

Charles University in Prague, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics,

Malostranské náměstı́ 25, 118 00 Prague, Czech Republic
lukas@zilka.me,jurcicek@ufal.mff.cuni.cz

Abstract. A dialog state tracker is an important component in modern spoken
dialog systems. We present the first trainable incremental dialog state tracker
that directly uses automatic speech recognition hypotheses to track the state. It
is based on a long short-term memory recurrent neural network, and it is fully
trainable from annotated data. The tracker achieves promissing performance on
the Method and Requested tracking sub-tasks in DSTC2.

Keywords: dialog systems, recurrent neural network, dialog state tracking

1 Introduction

A dialog state tracker is an essential component of modern spoken dialog systems. It
maintains the user’s goals throughout the dialog by looking at the automatic speech
recognition (ASR) results of her utterances. For example, in the restaurant information
domain, the dialog state tracker tracks what kind of food the user wants and which price
range is she looking for, and provides this information as a probability distribution over
food and price range: P(food, price range) The dialog state tracker also needs to deal
with speech recognition errors and tries to reduce their impact on the dialog [1].

The state-of-the-art dialog state trackers [2,3] achieve their performance by learning
from annotated data, and they were shown to work well in the restaurant information
domain in the dialog state tracking challenge DSTC2 [4]. However, they possess several
undesirable traits. First, they can only track the dialog state turn-by-turn (as opposed to a
more complicated word-by-word approach), which limits the responsivity of the dialog
system. Second, some of the trackers rely on the results from a spoken language under-
standing (SLU) component [5], which brings an additional component into the dialog
system that needs to be trained and tuned. Third, elaborate and complicated tracking
models of the trackers are difficult to reproduce and maintain. We aim to address these
problems in the model proposed in this paper.
? This research was partly funded by the Ministry of Education, Youth and Sports of the Czech Republic under the grant

agreement LK11221, core research funding, grant GAUK 2076214 of Charles University in Prague. This research was
(partially) supported by SVV project number 260 224. This work has been using language resources distributed by the
LINDAT/CLARIN project of the Ministry of Education, Youth and Sports of the Czech Republic (project LM2010013).
Cloud computational resources were provided by the MetaCentrum under the program LM2010005 and the CERIT-
SC under the program Centre CERIT Scientific Cloud, part of the Operational Program Research and Development for
Innovations, Reg. no. CZ.1.05/3.2.00/08.0144. We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Z GPU used for this research.



2 Lukáš Žilka and Filip Jurčı́ček

The contribution of this paper is our novel dialog state tracker, which we refer to
as LecTrack1. It aims towards building more responsive and simpler dialog systems by
proposing the first trainable dialog state tracker which naturally operates incrementally,
word-by-word, and can directly learn from annotated dialogs, removing the need for
an SLU unit. The word-by-word mode of tracking allows the dialog manager to be
more responsive with the users. Simplicity comes from the fact that the whole dialog
state tracker can be automatically optimized from data by a standard backpropagation
algorithm, without requiring the user to manually tune opaque hyper-parameters or task-
specific pre-processing.

Our LecTrack tracker is based on the long short-term memory recurrent neural net-
work (LSTM RNN) [6]. We have chosen this approach due to several reasons: First,
LSTMs were shown to be effective for learning sequence mappings in automatic speech
recognition [7], machine translation [8], and many other sequence classification tasks.
The length of the sequences successfully modelled by LSTMs is comparable to the
length to the word sequences in the spoken dialog systems. Second, the sequential na-
ture of the dialog naturally fits the LSTM’s recurrent mode of operation. And finally, as
the tracker processes the input, it incrementally builds an intermediate representation
of the dialog. It has been shown that good intermediate representations help generaliza-
tion [9]. The success of LSTM on multiple complicated and diverse tasks promises to
be exploitable also in dialog state tracking.

The paper is organized as follows. First, we give a basic description of the task (Sec-
tion 2). In Section 3, the model of the LSTM dialog state tracker is described with its
training procedure. Section 4 shows how it performs in the benchmarks. Then, in Sec-
tion 5, we discuss the results and qualities of the LSTM dialog state tracker. Finally we
discuss some related work from the literature (Section 6) and conclude with Section 7.

2 Dialog State Tracking

The task of dialog state tracking is to monitor progress in the dialog and provide a com-
pact representation of the dialog history in the form of a dialog state [4]. Because of
uncertainty in the user input, statistical dialog trackers maintain a probability distribu-
tion over all dialog states, called the belief state. As the dialog progresses, the dialog
state tracker updates this distribution given new observations.

In this paper, we define the dialog state at time t as a vector st ∈ C1 × ... × Ck

of k dialog state components, sometimes called slots in the literature. Each component
ci ∈ Ci = {v1, ..., vni

} takes one of the ni values (one of them can be the special
null value, which denotes that this dialog state component has not been specified). Our
dialog state tracker maintains a probability distribution over st factorized by the dialog
state components:

P (st|w1, ..., wt) =
∏
i

p(ci|w1, ..., wt; θ) (1)

Note that all models p(ci|·) share a substantial portion of the parameters, as detailed
in the next section, so despite the fact that the predictions are factorized and thus in-

1 (L)STM R(ec)urrent Neural Network Dialog State (Track)er.



Incremental Dialog State Tracking with Long Short-Term Memory Networks 3

dependent, they were optimized to minimize a joint objective function and therefore
naturally model the dependence between the dialog state components.

3 LSTM Dialog State Tracker

Here we define our novel LSTM dialog state tracking model. Its task is to map a se-
quence of words in the dialog w1, ..., wt to predictions for each of the k dialog state
components (p

(1)
t , ..., p

(k)
t ). Each p(i)t is a vector corresponding to a probability dis-

tribution over the values of the i-th dialog state component. For example, p(area)t is a
probability distribution over values {north, south, east, west} at the time t.

Fig. 1. A demonstration of the LSTM Dialog State Tracker applied to a user utterance “looking
for chinese food”. The encoding LSTM model Enc is sequentially applied to each input word
and at the end, its hidden state is used to feed to the state component classifiers.

3.1 Model
Our dialog state tracking model can be seen as an encoder-classifier model, where an
LSTM is used to encode the information from the input word sequence into a fixed-
length vector representation. Given this representation, the classifier predicts a value
for each of the dialog state components (as a probability distribution).

Formally we have an encoder that maps an input word and a previous hidden state
to a new hidden state, Enc(w, ht−1) = ht, and a classifier that maps a hidden state to a
prediction, C(ht) = pt. To encode the whole dialog, the encoder is applied sequentially
on the input sequence of words. In our system, we have one encoder Enc and multiple
classifiers C, one for each dialog state component (e.g. C(food), C(area), ...).

3.2 Tracker Model
LecTrack tracker is composed of two major components: the encoder Enc and the
classifier C, which together form together LecTrack LSTM dialog state tracker:

LecTrack : a1, ..., an → p1, ..., pk (2)
∀i ∈ 1, ..., k : pi = Ci(Enc(E · a1, ..., E · an, h0, c0)) (3)



4 Lukáš Žilka and Filip Jurčı́ček

Here, n is the length of the input sequence, k the number of the dialog state compo-
nents, a1, ..., an is the input word sequence encoded in a one-hot encoding, E is a
word embedding matrix, and h0 = c0 = 0 are zero vectors. As shown, each token
ai is mapped to its corresponding embedding vector through the embedding matrix E,
wi = E · ai, which is treated just as another parameter. The model of the encoder
Enc(wt, (ht−1; ct−1)) is a standard LSTM RNN [6,10], where ht−1 is the previous
LSTM output and ct−1 is the previous LSTM cell’s state. In case of a recursive appli-
cation of Enc, we write Enc(w1, ..., wn, h, c) instead of Enc(wn, ...Enc(w1, h, c)) to
simplify the notation. The model of the classifier C is a neural network with a single
layer composed of rectified linear units and a softmax output layer.

3.3 Training

The model is trained using the standard cross-entropy criterion [11] in the vanilla
stochastic gradient descent scenario [12]:

l(a1, ..., an, y1, ..., yk; θ) =

k∑
i=0

log LecTrack(a1, ..., an)
i
yi

(4)

Here, LecTrack(.)mn denotes the probability of the n-th value in the m-th dialog state
component.

After each optimization epoch, we monitor the performance 2 of the model on a
held-out set D. When the performance stops increasing for several iterations, we termi-
nate the training and select the best-performing model.

4 Experiments

To train and evaluate our model, we use the DSTC2 [4] data, which is a common data
set for dialog state tracking evaluation. The DSTC2 data consists of about 3,000 dialogs
from the restaurant information domain, each dialog is 10 turns long on average. This
data allows us to measure the performance of our tracker on turn-based dialogs. Ideally
we would run the evaluation on a dataset where we could also measure the incremental
capabilities of the tracker, but to the best of our knowledge, no such dataset is publicly
available yet, and we shall address this in our future work.

A baseline system for this domain has been provided by the DSTC2 organizers. It
uses the SLU results and confidence to rank hypotheses for the values of the individual
dialog state components. There were several baselines described in [4] and we report
the results of the focus baseline, which was the best among them.

We follow the DSTC2 methodology [4] and measure the accuracy and L2 norm of
the joint slot predictions. The joint predictions are grouped into the following groups,
and the results of each group is reported separately: Goals, Requested, Method. For
each dialog state component in each dialog the measurements are taken at the end of

2 See the experiments section for the description of the featured metrics.



Incremental Dialog State Tracking with Long Short-Term Memory Networks 5

each dialog turn, provided the component has already been mentioned in some of the
SLU n-best lists in the dialog3

4.1 Data Preprocessing

Each dialog turn contains the system utterance and the user utterances, which we need
to serialize into a stream of words as the input to our model. The system utterance
undergoes a simple preprocessing detailed below, and the user utterance is directly fed
to the model word-by-word without any further preprocessing. There is no difference
between the system and user utterance in the eyes of our model, both are seen together
as one long sequence of words.

System Input: To get the system input, we perform a simple preprocessing. We flat-
ten the system dialog acts of the form act type(slot name=slot value) into a se-
quence of two tokens t1, t2, where t1 = (act type, slot name) and t2 = slot value.
For example request(slot=food) is flattened as (request, slot), food, which the
model then sees as a word sequence of length two.

User Input: For the sake of simplicity, we use only the best live-ASR4 hypothesis and
ignore the rest of the n-best list. We plan to extend our model for processing multiple
ASR hypotheses in the near future.

Out-of-Vocabulary Words are randomly mixed into the training data to give the model
a chance to cope with unseen words: At training time, a word in the user input word
is replaced by a special out-of-vocabulary token with probability α. At test time, this
token is used for all unknown words.

4.2 Results

The results of LecTrack on the DSTC2 data are summarized in Table 1. For the groups
Method and Requested LecTrack’s accuracy is better than the baseline and comes closer
to the state-of-the-art. Within these groups the handcrafted preprocessing present in the
baseline and the state-of-the-art models is not as effective as for the Goal group.

We hypothesize that the accuracy on the Goal group does not achieve the state of
the art because of two reasons. First, LecTrack needs to see examples for each value of
each dialog state component. But the distribution of the individual values in the data has
a heavy tail, and thus the baseline method and state-of-the-art methods that use various
kinds of handcrafted abstraction to make the data denser and leverage hand-crafted
generalization beat LecTrack. Second, our model does not utilize the information in the

3 Note we do not use the SLU n-best list in our model at all, but we adapt this metric to be able
to compare to the other trackers in DSTC2.

4 There are batch and live ASR results in the DSTC2 data. We use the live ones and refer to
them as live-ASR.



6 Lukáš Žilka and Filip Jurčı́ček

n-best lists, thus loses useful information in the uncertain cases where more hypotheses
than the first one are useful.

For the frequently seen values from the group Goal the performance of LecTrack is
much better than the baseline, as is shown in Table 2. We looked at the sub-goal food
and compared the classification accuracy of its individual values. The top of the table
contains 9 values, which occur more than 100 times in the test set, as the representatives
of the classes that are well-represented in the data; the bottom of the table contains the
representatives of the under-represented classes, and we selected values which occur
at least 10 times in the test set to get meaningful accuracy estimates. For the well-
represented classes, LecTrack’s performance is stable and usually beats the baseline
by a large margin, however for the under-represented classes LecTrack’s performance
is much worse than the baseline. This suggests that some form of abstraction should
improve the results for the under-represented cases.

To keep the model simple we did not use any form abstraction, such as gazeteers to
preprocess our data, and only used 1-best hypothesis as an input. Gazeteers offer a cheap
solution to data sparsity for English but are difficult to gather and maintain for other
languages where one word can have many forms. In our future experiments we plan to
introduce some form of abstraction. Also, it is not obvious from the machine learning
literature how an n-best list could be used in the model to improve the performance.
This is another aspect that will be addressed in our future experiments.

Dev Test
Goal Method Requested Goal Method Requested

model Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2

baseline 0.61 0.63 0.83 0.27 0.89 0.17 0.72 0.46 0.90 0.16 0.88 0.20
LecTrack 0.62 0.79 0.87 0.24 0.95 0.09 0.60 0.79 0.91 0.17 0.96 0.07

state-of-the-art [2] 0.71 0.74 0.91 0.13 0.97 0.05 0.78 0.35 0.95 0.08 0.98 0.04

Table 1. Performance on the DSTC2 data.

ch
in

es
e

in
di

an

ko
re

an

as
ia

n
o.

do
n’

tc
ar

e

eu
ro

pe
an

ita
lia

n

sp
an

is
h

th
ai ...

tr
ad

iti
on

al

st
ea

kh
ou

se

ro
m

an
ia

n

ge
rm

an

baseline 0.53 0.49 0.67 0.54 0.98 0.61 0.41 0.69 0.14 0.17 0.14 0.35 0.28
LecTrack 0.82 0.79 0.93 0.86 0.88 0.80 0.79 0.73 0.64 0.17 0.07 0.21 0.07

Table 2. Accuracy for the most frequent values for the food dialog state component which have
at least 100 test examples in the test set, and for some that contain between 10 to 20 examples in
the test set.



Incremental Dialog State Tracking with Long Short-Term Memory Networks 7

5 Discussion

Our LSTM dialog state tracker is capable of learning from raw dialog text, annotated
with true dialog state component values at some timesteps. No spoken language under-
standing unit is needed to pre-process the input for our model. In addition, the model
performance does not suffer if the input word sequences are long, which is in accor-
dance with other LSTM applications [8].

Our model naturally handles the inter-slot dependence by projecting the input se-
quence into a fixed-length vector from which all the dialog state component predictions
are made. However, the predictions are made independently for all of the state compo-
nents and the joint distribution is not explicitly modelled.

Provided the ASR decodes also non-speech events, e.g., the affirmative ”hmm” or
”oh” or the information that the user is silent, the model can naturally learn to interpret
them and provide hints to the dialog manager, such as whether the user seems to be
confused, or if they started saying something and the dialog manager should interrupt
its speech production and listen instead. In noisy conditions, waiting for silence is very
limiting for the dialog system. The tracker’s ability to process the input incrementally
can overcome this issue and signal to the dialog manager when the incoming speech
starts to make sense. This can lead to more human-like and interactive dialogs and
simpler dialog managers. Our model was designed to be able to predict at arbitrary time
in the dialog the full distribution over the dialog state components, and this mode of
operation costs no additional computation as opposed to other trackers.

6 Related Work

The only incremental dialog system in the literature that we are aware of is [13]. In
this paper, the authors describe an incremental dialog system for number dictation as a
specific instance of their incremental dialog processing framework. To track the dialog
state, they use a discourse modelling system, which keeps track of the confidence scores
from the semantic parses of the input. The semantic parses are produced by a grammar-
based semantic interpreter with a hand-coded context-free grammar. While their system
is mostly handcrafted, ours is trained using annotated dialog data, so we do not need
the handcrafted grammar and an explicit semantic representation of the input.

Using RNN for dialog state tracking has been proposed before [3,14]. The dialog
state tracker in [3] uses an RNN, with a very elaborate architecture, to track the dialog
state turn-by-turn. Similarly to our model, their model does not need an explicit seman-
tic representation of the input. However, unlike our model, they use tagged n-gram fea-
tures, which allows them to perform better generalization on rare but well-recognized
values. Our model is capable of such generalization, too, but it needs more data. We re-
frain from using the tagged features because they introduce a preprocessing effort, and
we are interested in a model that can learn from the data directly without assuming any
correspondence between the names and values of the dialog state components and their
surface forms that occur in the dialog (e.g. that value “chinese” of the dialog state com-
ponent “food” will typically be represented as “chinese food” in the dialog). In English
dialog systems, it might be perceived as an unneccessary complication not to leverage



8 Lukáš Žilka and Filip Jurčı́ček

these tagged features, but when we consider other languages, where a word often has a
lot of forms, it pays off, because the effort spent on producing quality tagged features
is non-trivial.

7 Conclusion

We presented a first trainable incremental dialog state tracker that directly uses auto-
matic speech recognition hypotheses to track the state. It is based on a long short-term
memory recurrent neural network and fully trainable from the dialog utterances anno-
tated at certain points in time by the dialog state information. It represents the history
of the whole dialog as a low-dimensional real vector, which is on its own used for the
prediction of the whole dialog state. We evaluated our dialog state tracker on the data
from Dialog State Tracking Challenge 2, where we showed that it achieves a promiss-
ing performance on the Method and Requested tracking sub-tasks. We believe that the
simplicity, ease of use, and the incremental tracking capability of LecTrack make it a
first good step on the way towards more responsive dialog systems.

References
1. Williams, J., Raux, A., Ramachandran, D., Black, A.: The Dialog State Tracking Challenge.

In: Proceedings of the SIGDIAL 2013 Conference. (2013) 404–413
2. Williams, J.D.: Web-style ranking and SLU combination for dialog state tracking. In: 15th

Annual Meeting of the Special Interest Group on Discourse and Dialogue. (2014) 282
3. Henderson, M., Thomson, B., Young, S.J.: Word-based Dialog State Tracking with Recurrent

Neural Networks. In: Proceedings of SIGdial. (2014)
4. Henderson, M., Thomson, B., Williams, J.: The second dialog state tracking challenge. In:

15th Annual Meeting of the Special Interest Group on Discourse and Dialogue. (2014) 263
5. Wang, Y.Y., Deng, L., Acero, A.: Spoken language understanding. Signal Processing Mag-

azine, IEEE 22(5) (2005) 16–31
6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8) (1997)

1735–1780
7. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional lstm and

other neural network architectures. Neural Networks 18(5) (2005) 602–610
8. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:

Advances in Neural Information Processing Systems. (2014) 3104–3112
9. Gülçehre, Ç., Bengio, Y.: Knowledge matters: Importance of prior information for optimiza-

tion. arXiv preprint arXiv:1301.4083 (2013)
10. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv

preprint arXiv:1409.2329 (2014)
11. Rubinstein, R.Y., Kroese, D.P.: The cross-entropy method: a unified approach to combi-

natorial optimization, Monte-Carlo simulation and machine learning. Springer Science &
Business Media (2004)

12. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings
of COMPSTAT’2010. Springer (2010) 177–186

13. Skantze, G., Schlangen, D.: Incremental dialogue processing in a micro-domain. In: Pro-
ceedings of the 12th Conference of the European Chapter of the Association for Computa-
tional Linguistics, Association for Computational Linguistics (2009) 745–753

14. Henderson, M., Thomson, B., Young, S.J.: Deep Neural Network Approach for the Dialog
State Tracking Challenge. In: Proceedings of SIGdial. (2013)


	LecTrack: Incremental Dialog State Tracking with Long Short-Term Memory Networks
	Introduction
	Dialog State Tracking
	LSTM Dialog State Tracker
	Model
	Tracker Model
	Training

	Experiments
	Data Preprocessing
	System Input:
	User Input:
	Out-of-Vocabulary Words

	Results

	Discussion
	Related Work
	Conclusion


